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Abstract. We construct aq-deformationŜq of the centrally-extended Schrödinger algebraŜ
and an algebraic representation theory through lowest-weight representations. We use Verma
modules overŜq , calculate their singular vectors and factorize the Verma modules by submodules

built on the singular vectors. We also give a realization ofŜq with q-difference operators and
obtain a polynomial realization of the lowest-weight representations and an infinite family of
q-difference equations which may be called generalizedq-deformed heat/Schrödinger equations.
We also apply our methods to the on-shellq-Schr̈odinger algebra proposed by Floreanini and
Vinet.

1. Introduction

Quantum groups attracted much attention about 10 years ago after the seminal papers of
Drinfeld [1], Jimbo [2], Faddeevet al [3], yet most research is related to the quantum
group deformations of simple Lie algebras and groups, whilst there are very few examples
of q-deformations of non-semisimple Lie algebras.

We address the latter question in the present paper. We are motivated by the essential
role played in physics by non-semisimple Lie algebras; recall, for example, that the quantum
mechanics of a free particle inRn is governed by the centrally-extended Schrödinger algebra
Ŝ(n) (for other examples, cf, e.g. [4]). Furthermore, this is interesting because a general
deformation theory for non-semisimple Lie algebras is unknown, in general, even in the case
when one looks for aq-deformation withq-difference operators for which a Hopf structure
may not exist. Usuallyq-deformations of non-semisimple Lie algebras were obtained by
contractions ofq-deformations of semisimple Lie algebras (cf the first examples in [5, 6],
and, for more references, the recent paper [7]).

In the present paper we give an example of aq-deformation which is not obtained by
the standard method of contraction of commutator relations. We give aq-deformation of the
centrally-extended Schrödinger algebra in(1+1)-dimensional spacetime, and construct and
study some of its representations and realizations. (The Schrödinger algebra was introduced
for (3+1)-dimensional spacetime in [8, 9].) We derive a family ofŜq(1) invariant equations,
and we call and intrepret its first member as aq-deformed heat/Schrödinger equation. The
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motivation for this is the following. If one performs the same calculations starting with
Ŝ(1), i.e. construct algebraic representations via Verma modules and factorize by submodules
given by singular vectors, one also gets, as explained in [10], a family of equations whose
first member is the ordinary heat/Schrödinger equation if one uses the standard vector-field
representation ofŜ(1). We note that the somewhat indirect approach in [11] starts with
a specialq-deformed heat equation and looks for aq-symmetry algebra on its solution
variety. The resultingq-deformation of the the Schrödinger algebra in [11], which we shall
call on-shell deformation in the following, is different from ours and is (expectedly) valid
only on the solutions of theq-deformed heat equation under consideration.

The paper is organized as follows. In section 2 we give and explain ourq-
deformation Ŝq of the centrally-extended Schrödinger algebra and discuss some of its
properties: subalgebras, grading, conjugation. In section 3 we construct the lowest-weight
representations of̂Sq . We first construct the Verma modules overŜq , find their singular
vectors and finally factor the Verma submodules built on the singular vectors. In section 4
we give the vector-field realization of̂Sq which provides a polynomial realization of the
lowest-weight representations constructed in section 3 and an infinite family ofq-difference
equations which may be called generalizedq-deformed heat/Schrödinger equations. In
section 5 we apply our methods to the on-shellq-deformation proposed in [11].

2. q-deformed Schr̈odinger algebra Ŝq(1)

We first recall the classical commutation relations of the centrally-extended Schrödinger
algebraŜ(1) [4]:

[Pt , G] = Px (2.1a)

[K, Px ] = −G (2.1b)

[D, G] = G (2.1c)

[D, Px ] = −Px (2.1d)

[D, Pt ] = −2Pt (2.1e)

[D, K] = 2K (2.1f)

[Pt , K] = D (2.1g)

[Px, G] = m. (2.1h)

Below in (4.5) we give the standard vector-field realization ofŜ(1).
We use the followingq-number notations:

[a]q
.= qa − q−a

q − q−1
[a]′q

.= [a]q1/2 = qa/2 − q−a/2

q1/2 − q−1/2
= [a/2]q

[1/2]q
(2.2)

and similarly for diagonal operatorsH instead ofa.
Now we construct aq-deformation of the Schrödinger algebra under the following

conditions.
(1) A realization of the genaratorsPt , Px , G andK in terms ofq-difference operators

and multiplication operators should be available.
(2) In the limit q → 1 we should have the classical relations (2.1).
(3) The subalgebra structure should be preserved by the deformation and, in particular,

the d-deformedsl(2, C) subalgebra generated byD, K and Pt should coincide with the
usual Drinfeld–Jimbo deformationUq(sl(2, C)).
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With these conditions we get for̂Sq(1) the following non-trivial relations instead of
(2.1):

PtG − qGPt = Px (2.3a)

[Px, K] = Gq−D (2.3b)

[D, G] = G (2.3c)

[D, Px ] = −Px (2.3d)

[D, Pt ] = −2Pt (2.3e)

[D, K] = 2K (2.3f)

[Pt , K] = [D]q (2.3g)

PxG − q−1GPx = m (2.3h)

PtPx − q−1PxPt = 0. (2.3i)

Conditions (2) and (3) can now be checked directly; (2.3e)–(2.3g) are the standard
commutation relations of the Drinfeld–Jimbo deformationUq(sl(2, C)). Moreover, we
obtain aq-deformed centrally-extended Galilei subalgebra generated byPt , Px andG. The
deformation is a ‘mild’ one, in the sense that commutators are turned intoq-commutators,
cf (2.3a), (2.3h) and (2.3i), and it differs from the Galilei algebraq-deformation given
in [6], which is not a surprise taking into account that the latter is not a subalgebra of a
(q-deformed) Schr̈odinger algebra. Condition (1) will be discussed in section 4.

The commutation relations (2.3) are graded as the undeformed ones, if we define

degD = 0 (2.4a)

degG = 1 (2.4b)

degK = 2 (2.4c)

degPx = −1 (2.4d)

degPt = −2 (2.4e)

degm = 0. (2.4f)

For future reference we also record the following involutive anti-automorphism of the
q-Schr̈odinger algebra valid forreal q:

ω(Pt) = K ω(Px) = G ω(D) = D

ω(m) = m ω(q) = q.
(2.5)

3. Lowest-weight modules ofŜq(1)

Denote asS+ = S(1)+ the subalgebra generated by the positively-graded generatorsG and
K, and asS− = S(1)− the subalgebra generated by the negatively-graded generatorsPx

andPt .
Now we consider lowest-weight modules (LWM) ofŜ(1), in particular, Verma modules,

which are standard for semisimple Lie algebras (SSLA) and theirq-deformations. A lowest-
weight module is characterized by its lowest-weight vectorv0 and its lowest weight. The
lowest-weight vector is defined by the property of being annihilated byS− and of being an
eigenvector of the Cartan generators. The lowest weight is given by the eigenvalues of the
Cartan generators onv0. In our case the Cartan generator isD so that we must have

Dv0 = −dv0 Pxv0 = 0 Ptv0 = 0 (3.1)
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where d ∈ R will be called the (conformal) weight. (The minus sign is for later
convenience.)

We denote byB the non-positively graded subalgebra generated byD, Px andPt . (This
is an analogue of a Borel subalgebra.) A Verma moduleV d is defined as the LWM with
lowest weight−d, induced from a one-dimensional representation ofB spanned byv0, on
which the generators ofB act as in (3.1). It is given explicitly byV d = Uq(S+)⊗v0, where
Uq(S+) is the q-deformed universal enveloping algebra ofS+. Clearly, Uq(S+) has the
basis elementspk,` = GkK`. The basis vectors of the Verma module arevk,` = pk,` ⊗ v0,
(with v0,0 = v0). The action of theq-Schr̈odinger algebraon this basis is derived easily
from (2.3):

Dvk,` = (k + 2` − d)vk,` (3.2a)

Gvk,` = vk+1,` (3.2b)

Kvk,` = vk,`+1 (3.2c)

Pxvk` = q(1−k)/2m[k]′qvk−1,` + qd+1−`−k[`]qvk+1,`−1 (3.2d)

Ptvk` = [`]q [k + ` − 1 − d]qvk,`−1 + m
[k]′q [k − 1]′q

[2]′q
vk−2,`. (3.2e)

For the derivation of (3.2) the following relations (which follow from (2.3)) are useful:

PxG
k − q−kGkPx = mq(1−k)/2[k]′qG

k−1 (3.3a)

PxK
` − K`Px = q1−`[`]qGK`−1q−D (3.3b)

PtG
k − qkGkPt = [k]qG

k−1Px + [k]′q [k − 1]′q
[2]′q

Gk−2 (3.3c)

PtK
` − K`Pt = [`]qK

`−1[D + ` − 1]q . (3.3d)

Because of (3.2a) we notice that the Verma moduleV d can be decomposed in
homogeneous subspaces with respect to grading operatorD, (cf (2.4)), as follows:

V d = ⊕∞
n=0V

d
n (3.4a)

V d
n = lin.span.{vk,`|k + 2` = n} (3.4b)

dimV d
n = 1 +

[n

2

]
int

(3.4c)

where [s]int (not to be confused with [s]q) is the largest integer less than or equal tos.
Next we analyse the reducibility ofV d through analogues of singular vectors. As in

the SSLA situation a singular vectorvs in our case is a homogeneous element ofV d , such
that vs /∈ Cv0, and

Pxvs = 0 Ptvs = 0. (3.5)

Now we give the possible singular vectors explicitly. Fix the gradep > 0 and denote
the singular vector asvp

s . Consider the case ofeven grade,p ∈ 2N. Sincev
p
s ∈ V d

p we
have

vp
s =

p/2∑
`=0

a`vp−2`,` = Qp(G, K) ⊗ v0 p even. (3.6)

Applying (3.5) we obtain that a singular vector exists only ford = (p − 3)/2 (as forq = 1
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[10]) and is given for arbitraryq by the formula

vp
s = a0

p/2∑
`=0

(−m[2]′q)
`

(
p/2

`

)
q

vp−2`,` = a0(G
2 − m[2]′qK)p/2

q ⊗ v0

Qp(G, K) = a0(G
2 − m[2]′qK)p/2

q

(3.7)

where (
p

s

)
q

.= [p]q !

[s]q ![p − s]q !
[n]q !

.= [n]q [n − 1]q . . . [1]q . (3.8)

For odd grade there are no singular vectors as forq = 1 [10].
To analyse the consequences of the reducibility of our Verma modules we take the

subspace ofV (p−3)/2:

I (p−3)/2 = U(S+)vp
s . (3.9)

It is invariant under the action of the Schrödinger algebra, and is isomorphic to a Verma
moduleV d ′

with shifted weightd ′ = d − p = −(p + 3)/2. The latter Verma module has
no singular vectors, since its weight is restricted from above,d ′ 6 − 5

2, while it is clear that
the necessary weight is greater than or equal to− 1

2.
Let us denote byL(p−3)/2 the factor moduleV (p−3)/2/I (p−3)/2 and by |p〉 the lowest-

weight vector ofL(p−3)/2. As a consequence of (3.5) and (3.7),|p〉 satisfies

Px |p〉 = 0 (3.10a)

Pt |p〉 = 0 (3.10b)
p/2∑
`=0

(−m[2]′q)
`

(
p/2

`

)
q

Gp−2`K`|p〉 = 0. (3.10c)

Now from (3.10c) we see that

Kp/2|p〉 = −
p/2−1∑
`=0

1

(−m[2]′q)p/2−`

(
p/2

`

)
q

Gp−2`K`|p〉. (3.11)

By a repeated application of this relation to the basis one can get rid of all powers greater
than or equal top/2 of K. Thus the basis ofL(p−3)/2 will be a singleton basisfor p = 2,
and aquasi-singleton basisfor p > 4:

dimV (p−3)/2
n = 1 for n = 0, 1 or n > p (3.12)

and it is given by

v
p

k` ≡ GkK`|p〉 p ∈ 2N k, ` ∈ Z+ ` 6 p/2 − 1 d = (p − 3)/2.

(3.13)

The transformation rules of this basis are (3.2) except (3.2c) for ` = p/2− 1, when we
have

Kv
p

k,p/2−1 = −
p/2−1∑
s=0

1

(−m[2]′q)p/2−s

(
p/2

s

)
q

v
p

k+p−2s,s . (3.14c′)

From the transformation rules we see thatL(p−3)/2 is irreducible. In the simplest casep = 2
the irrepL−1/2 is also an irrep of theq-deformed centrally-extended Galilean subalgebra
Gq(1) generated byPx , Pt andG.

Hence, the complete list of the irreducible lowest-weight modules over theq-deformed
centrally-extended Schrödinger algebra is given by
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• V d , whend 6= (p − 3)/2, p ∈ 2N;
• L(p−3)/2, whend = (p − 3)/2, p ∈ 2N.
These irreps are infinite-dimensional.

4. Vector-field realization of Ŝq(1) and generalizedq-deformed heat equations

Let us introduce the ‘number’ operatorNy for the coordinatey = x, t , i.e.

Nyy
k = kyk (4.1)

and theq-difference operatorsDy and D′
y , which admit a general definition on a larger

domain than polynomials, but on polynomials which are well defined as follows,

Dy
.= 1

y
[Ny ]q (4.2a)

D′
y

.= 1

y[ 1
2]q

[
Ny

2

]
q

= 1

y
[Ny ]′q (4.2b)

so that for any suitable functionf we obtain as a consequence of (4.1)

Dyf (y) = f (qy) − f (q−1y)

y(q − q−1)
(4.3a)

D′
yf (y) = f (q

1
2 y) − f (q− 1

2 y)

y(q
1
2 − q− 1

2 )
. (4.3b)

For q → 1 one hasNy → y∂y andDy , D′
y → ∂y .

With this notation we find a five-parameter realization of (2.3) viaq-difference operators
(or vector-field realization for short):

Pt = qc1Dt q
(1−c5)Nt+(1−c4)Nx (4.4a)

Px = qc2D′
xq

−c4Nt+(c3+ 1
2 )Nx (4.4b)

D = 2Nt + Nx − d (4.4c)

G = qc2−c1−c4+c5tD′
xq

(c5−c4)Nt+(c3+c4− 1
2 )Nx + q−c2−c3− 1

2 mxqc4Nt−(c3+1)Nx (4.4d)

K = q−c1+c5−1+d t2Dt q
(c5−1)Nt+c4Nx + q−c1+c5−1+d txDxq

(c5−2)Nt+(c4−1)Nx

−q−c1+c5−1[d]q tq
c5Nt+c4Nx + q−2c2−3c3− 3

2 +d [ 1
2]qmx2q2(c4−1)Nt−2(c3+1)Nx (4.4e)

where c1, c2, c3, c4 and c5 are arbitrary parameters. (There might be other vector-field
realizations that are not equivalent to the one just given.)

For q = 1 we recover the standard vector-field realization ofŜ(1), namely,

Pt = ∂t (4.5a)

Px = ∂x (4.5b)

D = 2t∂t + x∂x − d (4.5c)

G = t∂x + mx (4.5d)

K = t2∂t + tx∂x − td + (m/2)x2. (4.5e)

Our realization (4.4) may be used to construct a polynomial realization of the irreducible
lowest-weight modules considered in section 3. For this case we represent the lowest-weight
vector by the function 1. Indeed, the constants in (4.4) are chosen so that (3.1) is satisfied:

D1 = −d Px1 = 0 Pt1 = 0. (4.6)
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Applying the basis elementspk,` = GkK` of the universal enveloping algebraUq(S+) to 1
we get polynomials inx, t which will be denoted byfk,` ≡ pk,`1. We have in special cases

f0,` = q`2(c5−1)/2+`(−c1+(c5−1)/2)(−d)
q

` t
`

×
∑̀
s=0

q−s2(2c3+2c4−(c5/2)+ 1
2 )

(−d)
q
s

(
`

s

)
q

(
q`(2c4−c5−1)+c1−2c2−c3−(c5/2)+1+dmx2

[2]′q t

)s

(4.7a)

f2k,0 = qk2(c5−1)/2+k(−c1+(c5−1)/2)( 1
2)

q

k ([2]′qmt)k

×
k∑

s=0

q−s2(2c3+2c4−(c5/2)+ 1
2

( 1
2)

q
s

(
k

s

)
q

(
qk(2c4−c5−1)+c1−2c2−c3−(c5/2)+ 1

2 mx2

[2]′q t

)s

(4.7b)

f2k+1,0 = mxqk2(c5−1)/2+k(−c1+c4+(c5−3)/2)−c2−c3− 1
2 ( 3

2)
q

k ([2]′qmt)k

×
k∑

s=0

q−s2(2c3+2c4−(c5/2)+ 1
2 )

( 3
2)

q
s

(
k

s

)
q

(
qk(2c4−c5−1)+c1−2c2−3c3−c4−(c5/2)− 1

2 mx2

[2]′q t

)s

(4.7c)

where(a)
q
p is theq-Pochhammer symbol

(a)qp = [a + p − 1]q [a + p − 2]q . . . [a]q . (4.8)

If we choose the constants such that 2c3 + 2c4 − c5/2 = 0 then the above sums are standard
degenerateq-hypergeometric polynomials:

1F
q

1 (−a, b; y) ≡
a∑

s=0

(
a

s

)
q

q−(s2/2)/(b)
q
s (−y)s. (4.9)

One can show that the basisfk,` is a realization of the irreducible lowest-weight
representations of̂S(1) listed at the end of the previous section. Indeed, there is one-to-one
correspondence between the statesvk,` of the Verma modules over̂Sq(1) and the polynomials
fk,`. The irreducible lowest-weight representations ofŜq(1) are factor modules of Verma
modules, with factorization over the invariant subspaces generated by singular vectors. This
statement is trivial if there is no singular vector. When a singular vector exists, i.e. for the
representationsV (p−3)/2, we obtain aq-difference operator by substituting inQp(G, K)

(cf (3.6) and (3.7)) each generator with its vector-field realization. For the irreducibility of
L(p−3)/2 it is enough to show that theq-difference operatorQp(G, K) vanishes identically
when applied to 1. This contains more information asQp(G, K) also gives aq-difference
equation invariant under the action ofŜq(1). Because of this invariance the solutions of
this equation are elements ofL(p−3)/2. Thus we have an infinite family ofq-difference
equations, the family members being labelled byp ∈ 2N, i.e. we have one equation for
each representation spaceV (p−3)/2. These equations may be called generalizedq-deformed
heat equations (m real) or generalizedq-deformed Schr̈odinger equations (m imaginary).
The casep = 2 is aq-difference analogue of the ordinary heat/Schrödinger equation.

Before making the last example explicit we make a choice of constants in (4.4) and set
for simplicity c1 = c2 = c3 = c4 = c5 = 0:

Pt = Dt q
Nt+Nx (4.10a)

Px = D′
xq

1
2 Nx (4.10b)

D = 2Nt + Nx − d (4.10c)
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G = tD′
xq

− 1
2 Nx + q− 1

2 mxq−Nx (4.10d)

K = qd−1t2Dt q
−Nt + qd−1txDxq

−2Nt−Nx − q−1[d]q t + qd− 3
2 [ 1

2]qmx2q−2Nt−2Nx . (4.10e)

The polynomials from (4.7) simplify to

f0,` = q−`(`+1)/2(−d)
q

` t
`

1F
q

1

(
−`, −d; −q1+d−`mx2

[2]′q t

)
(4.11a)

f2k,0 = q−k(k+1)/2( 1
2)

q

k ([2]′qmt)k 1F
q

1

(
−k, 1

2; −q
1
2 −kmx2

[2]′q t

)
(4.11b)

f2k+1,0 = q−k(k+3)/2− 1
2 ( 3

2)
q

k ([2]′qmt)kmx 1F
q

1

(
−k, 3

2; −q− 1
2 −kmx2

[2]′q t

)
. (4.11c)

The operatorSq = Q = G2 − [2]′qmK determining the singular vectors reads

Sq = t2q
1
2 (D′2

x q−Nx − qd− 3
2 [2]′qmDt q

−Nt ) + mtxD′
x([2]′q − (1 + qNx )qd−1−2Nt )q− 3

2 Nx

+q−1mt(q−2Nx + [2d]′q) + q−2m2x2(1 − qd+ 1
2 −2Nt )q−2Nx (4.12)

which for q = 1 gives

S = t2(∂2
x − 2m∂t) + mt(2d + 1). (4.13)

Hence we interprete ford = − 1
2 (which corresponds to the lowest singular vector(p = 2))

the equationSqf = 0 as aq-deformed heat/Schr¨odinger equationas we motivated in the
introduction. The explicit form of this equation is

Sqf = 0

Sq = t2q
1
2 (D′2

x q−Nx − q−2[2]′qmDt q
−Nt ) + mtxD′

x([2]′q − (1 + qNx )q− 3
2 −2Nt )q− 3

2 Nx

−λq−1mtxDxq
−Nx + λq−2m2x2tDt q

−Nt−2Nx (4.14)

whereλ
.= q−q−1. Forq 7→ 1 (λ 7→ 0) our equation leads to the ordinary heat/Schrödinger

equation.

5. A q-deformed Schr̈odinger algebra on-shell

We now discuss theq-deformation of the vector-field realization ofŜ(1) given by Floreanini
and Vinet [11]. The generators are [11]

Pt = Dt q
−1−Nt (5.1a)

Px = D′
xq

− 1
2 Nx− 1

2 (5.1b)

D = 2Nt + Nx + 1
2 (5.1c)

G = tD′
xq

− 1
2 Nx− 3

2 + x[ 1
2]qq

−Nx− 3
2 (5.1d)

K = t2Dt q
−Nt−2Nx−4 + txD′

xq
− 3

2 Nx− 5
2 + x2[ 1

2]2
qq

−2Nx−4 + t [ 1
2]qq

−2Nx− 7
2 . (5.1e)

Note that the explicit form of the above expressions differs from the one in [11],
formulae (9). We changet → (1− q−2)t andx → (1− q)x (employed in [11] only for the
limit q → 1); our definition for theq-difference operators (4.2) is also slightly different;
we useNy instead ofTy = qNy used in [11]; finally, our generatorD is essentially the log
of their D.

The advantage of the above form of theq-deformed generators is that theq → 1 limit
is more transparent. In that limit we recover (4.5) withm = 1

2, d = − 1
2. The value ofd
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is not accidental since this realization was achieved in [11] as the symmetry algebra of the
solutionsof a q-deformation of the heat equation. Indeed, these generators do not form a
closed algebra. We have instead of (2.1)

[Pt , G] = Pxq
−D− 1

2 (5.2a)

q2PxK − KPx = G (5.2b)

[D, G] = G (5.2c)

[D, Px ] = −Px (5.2d)

[D, Pt ] = −2Pt (5.2e)

[D, K] = 2K (5.2f)

[Pt , K] = 1

[ 1
2]q

[
D

2

]
q

q− 3
2 D−2 − λ[ 1

4]q [ 3
4]qq

−2D−2 (5.2g)

qPxG − GPx = [ 1
2]qq

−1/2. (5.2h)

However, instead of [G, K] = 0 one has

[G, K] = L = −λ
t2

x[ 1
2]q

[
Nx

2

]2

q

q−2Nx− 7
2 − λtx[ 1

2]q [Nt ]qq
−Nt−3Nx− 13

2 (5.3)

whereL is a new generator. For our purposes it is enough that the operatorL annihilates
all functionsfk,` = GkK`1. This is the on-shell poperty mentioned in the introduction. In
the basisfk,` we have

f0,` = f2`,0 (5.4a)

f2k,0 = ( 1
2)

q

k t
kq

− 1
2 k2−3k

1 F
q

1

(
−k; 1

2; −q1−kx2[ 1
2]2

q

t

)
(5.4b)

f2k+1,0 = ( 3
2)

q

k [ 1
2]qxtkq

− 1
2 (k2+3)−4k

1 F
q

1

(
−k; 3

2; −q−kx2[ 1
2]2

q

t

)
(5.4c)

(cf (4.9)). Forq = 1 these expressions were obtained in [10].
Formula (5.4a) is equivalent to(G2 −K)1 = 0, i.e. we have theq-deformed version of

the irrepL−1/2, (p = 2), and the basis consists only offk ≡ fk,0 = Gk1. The generators
act on this basis as follows:

Dfk = (k + 1
2)fk (5.5a)

Gfk = fk+1 (5.5b)

Kfk = fk+2 (5.5c)

Pxfk = k[ 1
2]qq

− 3
2 fk−1 (5.5d)

Ptfk = [ 1
2]qq

− 5
2 bkfk−2 bk

.=
k−1∑
s=0

sq−s (5.5e)

where, by summation convention,b0 = b1 = 0.
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