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Abstract. We construct aq—deformationéq of the centrally-extended Sdainger algebr£

and an algebraic representation theory through lowest-weight representations. We use Verma
modules oveéq, calculate their singular vectors and factorize the Verma modules by submodules
built on the singular vectors. We also give a realizatiorﬁpﬁNith q-difference operators and
obtain a polynomial realization of the lowest-weight representations and an infinite family of
g-difference equations which may be called generalizet:formed heat/Schdinger equations.

We also apply our methods to the on-shglSchibdinger algebra proposed by Floreanini and
Vinet.

1. Introduction

Quantum groups attracted much attention about 10 years ago after the seminal papers of
Drinfeld [1], Jimbo [2], Faddeeet al [3], yet most research is related to the quantum
group deformations of simple Lie algebras and groups, whilst there are very few examples
of g-deformations of non-semisimple Lie algebras.

We address the latter question in the present paper. We are motivated by the essential
role played in physics by non-semisimple Lie algebras; recall, for example, that the quantum
mechanics of a free particle IR" is governed by the centrally-extended Sitinger algebra
Sn) (for other examples, cf, e.g. [4]). Furthermore, this is interesting because a general
deformation theory for non-semisimple Lie algebras is unknown, in general, even in the case
when one looks for g-deformation withg-difference operators for which a Hopf structure
may not exist. Usually;-deformations of non-semisimple Lie algebras were obtained by
contractions ofy-deformations of semisimple Lie algebras (cf the first examples in [5, 6],
and, for more references, the recent paper [7]).

In the present paper we give an example ef-deformation which is not obtained by
the standard method of contraction of commutator relations. We gjvdeformation of the
centrally-extended Sctdinger algebra i1+ 1)-dimensional spacetime, and construct and
study some of its representations and realizations. (The8ittger algebra was introduced
for (34+1)-dimensional spacetime in [8, 9].) We derive afamilyﬁg(l) invariant equations,
and we call and intrepret its first member ag-deformed heat/Schidinger equation. The
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motivation for this is the following. If one performs the same calculations starting with
S(1), i.e. construct algebraic representations via Verma modules and factorize by submodules
given by singular vectors, one also gets, as explained in [10], a family of equations whose
first member is the ordinary heat/Sédinger equation if one uses the standard vector-field
representation 08(1). We note that the somewhat indirect approach in [11] starts with

a specialg-deformed heat equation and looks forgasymmetry algebra on its solution
variety. The resulting-deformation of the the Sctdinger algebra in [11], which we shall

call on-shell deformation in the following, is different from ours and is (expectedly) valid
only on the solutions of thg-deformed heat equation under consideration.

The paper is organized as follows. In section 2 we give and explain geur
deformationé‘,, of the centrally-extended Saidinger algebra and discuss some of its
properties: subalgebras, grading, conjugation. In section 3 we construct the lowest-weight
representations af,. We first construct the Verma modules oy, find their singular
vectors and finally factor the Verma submodules built on the singular vectors. In section 4
we give the vector-field realization &, which provides a polynomial realization of the
lowest-weight representations constructed in section 3 and an infinite famjhgiference
equations which may be called generalizgdleformed heat/Schidinger equations. In
section 5 we apply our methods to the on-slgetleformation proposed in [11].

2. g-deformed Schidinger algebra Sq(l)

We first recall the classical commutation relations of the centrally-extended®ober
algebras(1) [4]:

[P, G] = P, (2.19)
[K,P]=-G (2.1b)
[D.G] =G (2.1c)
[D, P,] = —Px (2.1d)
[D, P] = -2P, (2.1e)
[D, K] = 2K (2.1f)
[P, K]=D (2.19)
[P, G] =m. (2.1h)

Below in (4.5) we give the standard vector-field realizatiorSot).
We use the followingz-number notations:

_ ,—a a/2 _ ,,—a/2
. q9'—q ;. _q g [a/2],
e = =g ey = llge = e = gmam = [1/2],

a

2.2)

and similarly for diagonal operatoi instead ofa.

Now we construct ag-deformation of the Sclkidinger algebra under the following
conditions.

(1) A realization of the genarato®, P,, G and K in terms ofg-difference operators
and multiplication operators should be available.

(2) In the limitg — 1 we should have the classical relations (2.1).

(3) The subalgebra structure should be preserved by the deformation and, in particular,
the d-deformedsi (2, C) subalgebra generated By, K and P, should coincide with the
usual Drinfeld—Jimbo deformatiofr, (s/(2, C)).
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With these conditions we get fQﬁ?q(l) the following non-trivial relations instead of
(2.1):

P,G —qGP, = P, (2.39)
[P..K]=Gq " (2.30)
[D,G] =G (2.%)
[D, P] = —P, (2.3d)
[D, P] = —2P, (2.30)
[D, K] =2K (2.3)
[, K] =[D], (2.39)
P.G—q GP,=m (2.3n)
PP, —q PP, =0. (2.3)

Conditions (2) and (3) can now be checked directly; {-8.3%) are the standard
commutation relations of the Drinfeld—Jimbo deformatibp(s/(2, C)). Moreover, we
obtain ag-deformed centrally-extended Galilei subalgebra generatef} b§, andG. The
deformation is a ‘mild’ one, in the sense that commutators are turned;istmmmutators,
cf (2.3%), (2.31) and (2.3), and it differs from the Galilei algebra-deformation given
in [6], which is not a surprise taking into account that the latter is not a subalgebra of a
(g-deformed) Schirdinger algebra. Condition (1) will be discussed in section 4.

The commutation relations (2.3) are graded as the undeformed ones, if we define

degD =0 (2.49)
degG =1 (2.%)
degk =2 (2.4)
degpP, = -1 (2.4)
degP, = -2 (2.4
degm = 0. (2.4f)

For future reference we also record the following involutive anti-automorphism of the
g-Schibdinger algebra valid foreal g:

w(P)=K w(P) =G w(D)=D

(2.5)
w(m) =m w(g) =gq.

3. Lowest-weight modules ofS,(1)

Denote asS™ = S(1)* the subalgebra generated by the positively-graded geneiGitarsl
K, and asS— = S(1)~ the subalgebra generated by the negatively-graded genegtors
and P,.

Now we consider lowest-weight modules (LWM)étl), in particular, Verma modules,
which are standard for semisimple Lie algebras (SSLA) and thdiformations. A lowest-
weight module is characterized by its lowest-weight veeipand its lowest weight. The
lowest-weight vector is defined by the property of being annihilated byand of being an
eigenvector of the Cartan generators. The lowest weight is given by the eigenvalues of the
Cartan generators om. In our case the Cartan generatorZisso that we must have

Dvo = —dvo vao =0 P;Uo =0 (31)
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where d € R will be called the (conformal) weight. (The minus sign is for later
convenience.)

We denote by5 the non-positively graded subalgebra generatedby, and P,. (This
is an analogue of a Borel subalgebra.) A Verma modtdeis defined as the LWM with
lowest weight—d, induced from a one-dimensional representatiol8afpanned by, on
which the generators d act as in (3.1). It is given explicitly by ¢ = U,(S*) ® vo, where
U,(S") is the g-deformed universal enveloping algebra®f. Clearly, U,(S™) has the
basis elementp; , = G*K*¢. The basis vectors of the Verma module afe = p; ® vo,
(with voo = vp). The action of theg-Schibdinger algebraon this basis is derived easily
from (2.3):

ka’g = (k+ 20— d)vk.[ (32&)

GUre = Vk1e (3.2b)

Kvee = vk e (3.x)

Povee = ¢ Pk o1 + g T v (3.2d)
[k], [k — 1],

Povge = [Lly[k + € — 1 —d]gvie-1 + mTvk—z,e- (3.2%¢)

q
For the derivation of (3.2) the following relations (which follow from (2.3)) are useful:
P.G* — g7*G* P, = mqg ™ P12[k], GF (3.39)
PK'—K'P =q"'[(],GK 1qP (3.30)
kKl [k —1]

P,G* — ¢*G* P, = [k],G* 1P, + [, = 1, ]q[[z]/ b iz (3.%)
q

PK'—K'P =[], KD+ ¢—-1], (3.3d)

Because of (32 we notice that the Verma modul&¢ can be decomposed in
homogeneous subspaces with respect to grading opdbat(mf (2.4)), as follows:

V=@,V (3.40)
Ve = lin.span.{v ¢|k + 2¢ = n} (3.40)
dimve=1+[2 3.4¢

'm " + [Z]int ( )

where k]ine (not to be confused withs],) is the largest integer less than or equabto

Next we analyse the reducibility of¢ through analogues of singular vectors. As in
the SSLA situation a singular vectoy in our case is a homogeneous elemenvVéf such
that v, ¢ Cug, and

Py, =0 Py, =0. (3.5

Now we give the possible singular vectors explicitly. Fix the grade 0 and denote
the singular vector as?. Consider the case @vengrade,p € 2N. Sincev! e V;’ we
have

/2
V=% a, = 9" (G, K)® o p even (3.6)

<

~
I
o

Applying (3.5) we obtain that a singular vector exists onlydoe (p — 3)/2 (as forg = 1
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[10]) and is given for arbitrary by the formula

p/2 p/2
vy = ao ZO(—m[Z];)E( ¢ ) V206 = ao(G? — m[2], K)!"? ® vo
= q

3.7)
Q7(G, K) = ao(G? — m[2],K)»/?
where
r\ . [r],! )
(S>q - m [n],! = [n],[n — 1], ...[1],. (3.8)

For odd grade there are no singular vectors asdoe 1 [10].
To analyse the consequences of the reducibility of our Verma modules we take the
subspace o/ (P=3/2;
1P732 = y(SHw?. (3.9)
It is invariant under the action of the Séldinger algebra, and is isomorphic to a Verma
module V" with shifted weightd’ = d — p = —(p + 3)/2. The latter Verma module has
no singular vectors, since its weight is restricted from abaVeg —g, while it is clear that
the necessary weight is greater than or equalrgo

Let us denote byC?—3/2 the factor moduleV ?=3/2/1(P=3/2 and by|p) the lowest-
weight vector of£?~3/2, As a consequence of (3.5) and (3.]p)) satisfies

P|p)=0 (3.1()
p/2

Z(_mm;)f(p f) G"*K'|p)=0. (3.10)
=0 q

Now from (3.1@) we see that
p/2-1
1 p/2 _
K"2|p) = — ( ) G"*K'|p). (3.11)
2 e\ ),

By a repeated application of this relation to the basis one can get rid of all powers greater
than or equal tgp/2 of K. Thus the basis of ?~3/2 will be a singleton basidor p = 2,
and aquasi-singleton basisor p > 4:

dimv=3/2 =1 forn=0,10rn>p (3.12)
and it is given by
v, = G*K'|p) p € 2N k,teZ, t<p/2-1 d=(p—23)/2
(3.13)

The transformation rules of this basis are (3.2) exceptf3@ ¢ = p/2 — 1, when we
have

r/2-1 1 P/2
Ko ppa == ; (—m[z]/q)p/zs( s )q”fw—zsﬁs' (3.14)
From the transformation rules we see tii&t—2/2 is irreducible. In the simplest cage= 2
the irrep£~/? is also an irrep of the-deformed centrally-extended Galilean subalgebra
G,(1) generated byP,, P, andG.

Hence, the complete list of the irreducible lowest-weight modules ovey-theformed
centrally-extended Scbdinger algebra is given by
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e V¢ whend # (p —3)/2, p € 2N;
o L(P=3/2 whend = (p —3)/2, p € 2N.
These irreps are infinite-dimensional.

4. Vector-field realization of S'q(l) and generalizedg-deformed heat equations

Let us introduce the ‘number’ operatdf, for the coordinatey = x, ¢, i.e.
Nyy* = ky* (4.1)

and theg-difference operator®, and D}, which admit a general definition on a larger
domain than polynomials, but on polynomials which are well defined as follows,

D, = IV, (4.22)

, . 1 [N, 1 ,
D, = —3— [2} = —[N,] (4.20)
y[é]q q y
so that for any suitable functiofi we obtain as a consequence of (4.1)
@) = flgy)

Dyf(y)= Y —a D (4.32)
D,f() = f(q?y);— f(_q;?y). (4.30)
y(gz —q72)

Forg — 1 one hasV, — yd, andD,, D} — 9,.
With this notation we find a five-parameter realization of (2.3)¢#difference operators
(or vector-field realization for short):

P = qD,g N o (4.4
P, = qczp/q7641\’r+(6‘3+%)1\’x (4 4b)
g .
D=2N,+N, —d (4.4c)
G = qczfclfcmLcstD;q(6‘5*6‘4)Nr+(C3+C4*%)Nx + q*CZ*Cfi*%quC4N17(C3+1)NX (4.4d)

K = q_C1+C5—1+dt2th(CS_]—)N1+C4Nr + q—¢‘1+c‘s—1+dtxqu(05—2)N1+(C4—1)Nx
e . . . 200—3a_3 — —2(¢
_q—L1+L5 1[d]qlq‘5N’+L4N‘ +q 2c¢p—3c3 2+d[%]qu2q2(c4 1)N;—2(c3+1)N, (448)
wherecy, ¢z, c3, c4 andcs are arbitrary parameters. (There might be other vector-field

realizations that are not equivalent to the one just given.)
For g = 1 we recover the standard vector-field realizatior5¢1), namely,

P =39 (4.53)
P, = 0, (4.50)
D =29, +x0, —d (4.50)
G =10, +mx (4.5d)
K =129, + tx0, — td + (m/2)x>. (4.5)

Our realization (4.4) may be used to construct a polynomial realization of the irreducible
lowest-weight modules considered in section 3. For this case we represent the lowest-weight
vector by the function 1. Indeed, the constants in (4.4) are chosen so that (3.1) is satisfied:

Dl=—d P1=0 P1=0. (4.6)
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Applying the basis elements, , = G*K* of the universal enveloping algebtg (S*) to 1
we get polynomials i, r which will be denoted byf; = pi. (1. We have in special cases

02(cs—1)/24+-t(—c1+(cs—1)/2) (-d)zte

£, g5 @eat2ea—(cs/D+3) ( 6) (qe(2c4—cs—1)+c1—2cz—c3—(cs/2>+1+dmx2)s
(=d){ q (2],

Jor=gq

X

S
s=0

(4.78)

2 - — —
foro = g IR Gy 2] ot

X

k q732(2(73+264*(65/2)+% (k) (qk(264(75l)+(7120203(65/2)+%mx2>s
1
s=0 (i)? /g [2];;
(4.70)
2(0e 1) /2 ke (— 1 - Cat- (e —3) /D) —cr—ca L
fasro = magh s /2HkCertent(s=3/2memca=3 ()4 ([2]! mi)*
1

k q—52(2(-3+2L'4—(L'5/2)+%) ( k ) < g eames—Der—2e2—3ca—Ca(¢s/2)= 5y 1.2 )s
q

" L ) [2],1

N

(4.7c)
where(a)} is the g-Pochhammer symbol

@h=la+p—1la+p—2],...[al,. (4.8)

If we choose the constants such thag 2 2c4 — ¢cs/2 = 0 then the above sums are standard
degeneratg-hypergeometric polynomials:

i (—a.biy) =) (a> g~ IO (. (4.9)
s=0 S q

One can show that the basig, is a realization of the irreducible lowest-weight
representations a$(1) listed at the end of the previous section. Indeed, there is one-to-one
correspondence between the staggsof the Verma modules ovéq (1) and the polynomials
fr.e- The irreducible lowest-weight representationsS@fl) are factor modules of Verma
modules, with factorization over the invariant subspaces generated by singular vectors. This
statement is trivial if there is no singular vector. When a singular vector exists, i.e. for the
representationd/ ?~3/2, we obtain ag-difference operator by substituting i@”(G, K)
(cf (3.6) and (3.7)) each generator with its vector-field realization. For the irreducibility of
L£P=3/2 it is enough to show that the-difference operato©? (G, K) vanishes identically
when applied to 1. This contains more information@&(G, K) also gives a;-difference
equation invariant under the action 3;(1). Because of this invariance the solutions of
this equation are elements @f?~3/2, Thus we have an infinite family of-difference
equations, the family members being labelled hy 2N, i.e. we have one equation for
each representation spaé’~2/2. These equations may be called generaligzeteformed
heat equationsn{ real) or generalized-deformed Sclidinger equationss{ imaginary).
The casep = 2 is ag-difference analogue of the ordinary heat/Salinger equation.

Before making the last example explicit we make a choice of constants in (4.4) and set
for simplicity ¢; = ¢ = c3 =c4 = ¢5 = 0:

P, = D,g" Vs (4.108)
P, =D.q?" (4.10)
D=2N,+N,—d (4.10@)
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G = tD;q_%N" + q_%qu_N*‘ (4.1ad)
K = q"'?Dg ™™ + ¢ LxDg NN — g Hd] 1 + g7 2 [ 3] mx?g 2NN (4.108)
The polynomials from (4.7) simplify to

1+d—¢ 2
for=q 2@yt F (e, —d; L (4.11a)
’ [21,1
1k, .2
_ , qz mx
foro = g VRN (2] ok Y (—k, L —[Z],t) (4.11b)
q
~3 k2
fasro = q 22 31 ([2]Lmn)mx 1 FY (—k, 3 —"[2“) (4.11c)
q

The operators, = Q = G? - [2];mK determining the singular vectors reads

S, = 1243 (D2q™ — q*=3[2],mDig™™) + mtxD, (2], — (L+ g™ )g? = 2yg =M

+q tmi (g2 4 [2d])) + g PmPxP (1 — gt a2 g2 (4.12)
which forg = 1 gives
S = t%(3% — 2md,) +mt(2d + 1). (4.13)

Hence we interprete faf = —% (which corresponds to the lowest singular veatpr= 2))
the equationS, f = 0 as ag-deformed heat/Schdinger equationas we motivated in the
introduction. The explicit form of this equation is

S,f=0
1 - - — / / _3_ _3
Sy = 1242 (DZq™™ — q~*[21;mD,q~") + mtxD, (2], — L+ ¢")g~272)g 72"
—Ag tmtxDyqg ™ + AgT2mPx% D, g N 2 (4.14)

wherex = g —g~1. Forg — 1 (A — 0) our equation leads to the ordinary heat/®cdmger
equation.

5. A g-deformed Schiddinger algebra on-shell

We now discuss the-deformation of the vector-field realization 811) given by Floreanini
and Vinet [11]. The generators are [11]

P, =D, g ™M (5.1a)
Px — D;q_%Nx_% (5]b)
D=2N,+N,+1 (5.10)
G =1D.q M2 4 x[3],g7 V2 (5.1d)
K = 1?D,q NN DTN T 4 a2 122N i R], 7N (5.1¢)

Note that the explicit form of the above expressions differs from the one in [11],
formulae (9). We change— (1—¢~?)t andx — (1—¢)x (employed in [11] only for the
limit ¢ — 1); our definition for theg-difference operators (4.2) is also slightly different;
we useN, instead ofT, = ¢ used in [11]; finally, our generatap is essentially the log
of their D.

The advantage of the above form of theleformed genelrators is that the— 1 limit

is more transparent. In that limit we recover (4.5) with= 3, d = —%. The value ofd
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is not accidental since this realization was achieved in [11] as the symmetry algebra of the
solutionsof a g-deformation of the heat equation. Indeed, these generators do not form a
closed algebra. We have instead of (2.1)

[P, G] = P.q~ P2 (5.2)
g°P.K —KP, =G (5.20)
[D.G]=G (5.20)
[D, P] = —P, (5.2d)
[D, Pr] = —2P, (526)
[D, K] =2K (5.2
1 [D
K1 = [ | o0 a2 629
24q q
qP.G —GP, =[31,q7 "> (5.2n)
However, instead of, K] = 0 one has
t2 N. 2 7 13
16.K1 = L=t | | @t < antg g 53)
24q q

where L is a hew generator. For our purposes it is enough that the opdradanihilates
all functions f, , = G*K*1. This is the on-shell poperty mentioned in the introduction. In
the basisf;, we have

Joe = fao (5.4a)
1k 2r172
—1k2-3k g x73]
fao=G)itrq T F] (—k; 5 —“) (5.4p)

t
q‘kleé]ﬁ)

t (5.4c)

— 3 (k243)—4k
farro = ) [2lxttq PV E] (—k; 35—
(cf (4.9)). Forg = 1 these expressions were obtained in [10].
Formula (5.4) is equivalent ta G2 — K)1 = 0, i.e. we have thg-deformed version of
the irrep£L~Y2, (p = 2), and the basis consists only ¢f = fi.0 = G*1. The generators
act on this basis as follows:

Dfi = (k+ 3 fi (5.53)

Gfe = fit1 (5.50)

Kfx = fit2 (5.50)

Py fi = k[31007 2 fia (5.50)
k-1

Pfi=[3ea tbefie b= sq7 (5.5)

where, by summation conventiobg = b; = 0.
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