A \boldsymbol{q}-Schrödinger algebra, its lowest-weight representations and generalized \boldsymbol{q}-deformed heat/Schrödinger equations

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1996 J. Phys. A: Math. Gen. 295909
(http://iopscience.iop.org/0305-4470/29/18/020)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.70
The article was downloaded on 02/06/2010 at 04:00

Please note that terms and conditions apply.

A q-Schrödinger algebra, its lowest-weight representations and generalized \boldsymbol{q}-deformed heat/Schrödinger equations

V K Dobrev $\dagger §$, H-D Doebner \ddagger and C Mrugalla \ddagger
\dagger International Center for Theoretical Physics via Costiera 11, PO Box 586, 34100 Trieste, Italy \ddagger Arnold Sommerfeld Institute for Mathematical Physics, Technical University Clausthal, Leibnizstrasse 10, 38678 Clausthal-Zellerfeld, Germany

Received 12 February 1996

Abstract

We construct a q-deformation $\hat{\mathcal{S}}_{q}$ of the centrally-extended Schrödinger algebra $\hat{\mathcal{S}}$ and an algebraic representation theory through lowest-weight representations. We use Verma modules over $\hat{\mathcal{S}}_{q}$, calculate their singular vectors and factorize the Verma modules by submodules built on the singular vectors. We also give a realization of $\hat{\mathcal{S}}_{q}$ with q-difference operators and obtain a polynomial realization of the lowest-weight representations and an infinite family of q-difference equations which may be called generalized q-deformed heat/Schrödinger equations. We also apply our methods to the on-shell q-Schrödinger algebra proposed by Floreanini and Vinet.

1. Introduction

Quantum groups attracted much attention about 10 years ago after the seminal papers of Drinfeld [1], Jimbo [2], Faddeev et al [3], yet most research is related to the quantum group deformations of simple Lie algebras and groups, whilst there are very few examples of q-deformations of non-semisimple Lie algebras.

We address the latter question in the present paper. We are motivated by the essential role played in physics by non-semisimple Lie algebras; recall, for example, that the quantum mechanics of a free particle in \mathbb{R}^{n} is governed by the centrally-extended Schrödinger algebra $\hat{\mathcal{S}}(n)$ (for other examples, cf, e.g. [4]). Furthermore, this is interesting because a general deformation theory for non-semisimple Lie algebras is unknown, in general, even in the case when one looks for a q-deformation with q-difference operators for which a Hopf structure may not exist. Usually q-deformations of non-semisimple Lie algebras were obtained by contractions of q-deformations of semisimple Lie algebras (cf the first examples in [5, 6], and, for more references, the recent paper [7]).

In the present paper we give an example of a q-deformation which is not obtained by the standard method of contraction of commutator relations. We give a q-deformation of the centrally-extended Schrödinger algebra in $(1+1)$-dimensional spacetime, and construct and study some of its representations and realizations. (The Schrödinger algebra was introduced for $(3+1)$-dimensional spacetime in $[8,9]$.) We derive a family of $\hat{\mathcal{S}}_{q}(1)$ invariant equations, and we call and intrepret its first member as a q-deformed heat/Schrödinger equation. The

[^0]motivation for this is the following. If one performs the same calculations starting with $\hat{\mathcal{S}}(1)$, i.e. construct algebraic representations via Verma modules and factorize by submodules given by singular vectors, one also gets, as explained in [10], a family of equations whose first member is the ordinary heat/Schrödinger equation if one uses the standard vector-field representation of $\hat{\mathcal{S}}(1)$. We note that the somewhat indirect approach in [11] starts with a special q-deformed heat equation and looks for a q-symmetry algebra on its solution variety. The resulting q-deformation of the the Schrödinger algebra in [11], which we shall call on-shell deformation in the following, is different from ours and is (expectedly) valid only on the solutions of the q-deformed heat equation under consideration.

The paper is organized as follows. In section 2 we give and explain our q deformation $\hat{\mathcal{S}}_{q}$ of the centrally-extended Schrödinger algebra and discuss some of its properties: subalgebras, grading, conjugation. In section 3 we construct the lowest-weight representations of $\hat{\mathcal{S}}_{q}$. We first construct the Verma modules over $\hat{\mathcal{S}}_{q}$, find their singular vectors and finally factor the Verma submodules built on the singular vectors. In section 4 we give the vector-field realization of $\hat{\mathcal{S}}_{q}$ which provides a polynomial realization of the lowest-weight representations constructed in section 3 and an infinite family of q-difference equations which may be called generalized q-deformed heat/Schrödinger equations. In section 5 we apply our methods to the on-shell q-deformation proposed in [11].

2. q-deformed Schrödinger algebra $\hat{\mathcal{S}}_{q}(\mathbf{1})$

We first recall the classical commutation relations of the centrally-extended Schrödinger algebra $\hat{\mathcal{S}}(1)$ [4]:

$$
\begin{align*}
& {\left[P_{t}, G\right]=P_{x}} \tag{2.1a}\\
& {\left[K, P_{x}\right]=-G} \tag{2.1b}\\
& {[D, G]=G} \tag{2.1c}\\
& {\left[D, P_{x}\right]=-P_{x}} \tag{2.1d}\\
& {\left[D, P_{t}\right]=-2 P_{t}} \tag{2.1e}\\
& {[D, K]=2 K} \tag{2.1f}\\
& {\left[P_{t}, K\right]=D} \tag{2.1g}\\
& {\left[P_{x}, G\right]=m} \tag{2.1h}
\end{align*}
$$

Below in (4.5) we give the standard vector-field realization of $\hat{\mathcal{S}}(1)$.
We use the following q-number notations:

$$
\begin{equation*}
[a]_{q} \doteq \frac{q^{a}-q^{-a}}{q-q^{-1}} \quad[a]_{q}^{\prime} \doteq[a]_{q^{1 / 2}}=\frac{q^{a / 2}-q^{-a / 2}}{q^{1 / 2}-q^{-1 / 2}}=\frac{[a / 2]_{q}}{[1 / 2]_{q}} \tag{2.2}
\end{equation*}
$$

and similarly for diagonal operators H instead of a.
Now we construct a q-deformation of the Schrödinger algebra under the following conditions.
(1) A realization of the genarators P_{t}, P_{x}, G and K in terms of q-difference operators and multiplication operators should be available.
(2) In the limit $q \rightarrow 1$ we should have the classical relations (2.1).
(3) The subalgebra structure should be preserved by the deformation and, in particular, the d-deformed $\operatorname{sl}(2, \mathbb{C})$ subalgebra generated by D, K and P_{t} should coincide with the usual Drinfeld-Jimbo deformation $U_{q}(s l(2, \mathbb{C}))$.

With these conditions we get for $\hat{\mathcal{S}}_{q}(1)$ the following non-trivial relations instead of (2.1):

$$
\begin{align*}
& P_{t} G-q G P_{t}=P_{x} \tag{2.3a}\\
& {\left[P_{x}, K\right]=G q^{-D}} \tag{2.3b}\\
& {[D, G]=G} \tag{2.3c}\\
& {\left[D, P_{x}\right]=-P_{x}} \tag{2.3d}\\
& {\left[D, P_{t}\right]=-2 P_{t}} \tag{2.3e}\\
& {[D, K]=2 K} \tag{2.3f}\\
& {\left[P_{t}, K\right]=[D]_{q}} \tag{2.3g}\\
& P_{x} G-q^{-1} G P_{x}=m \tag{2.3h}\\
& P_{t} P_{x}-q^{-1} P_{x} P_{t}=0 . \tag{2.3i}
\end{align*}
$$

Conditions (2) and (3) can now be checked directly; (2.3e)-(2.3g) are the standard commutation relations of the Drinfeld-Jimbo deformation $U_{q}(s l(2, \mathbb{C}))$. Moreover, we obtain a q-deformed centrally-extended Galilei subalgebra generated by P_{t}, P_{x} and G. The deformation is a 'mild' one, in the sense that commutators are turned into q-commutators, cf $(2.3 a),(2.3 h)$ and $(2.3 i)$, and it differs from the Galilei algebra q-deformation given in [6], which is not a surprise taking into account that the latter is not a subalgebra of a (q-deformed) Schrödinger algebra. Condition (1) will be discussed in section 4.

The commutation relations (2.3) are graded as the undeformed ones, if we define

$$
\begin{align*}
& \operatorname{deg} D=0 \tag{2.4a}\\
& \operatorname{deg} G=1 \tag{2.4b}\\
& \operatorname{deg} K=2 \tag{2.4c}\\
& \operatorname{deg} P_{x}=-1 \tag{2.4d}\\
& \operatorname{deg} P_{t}=-2 \tag{2.4e}\\
& \operatorname{deg} m=0 \tag{2.4f}
\end{align*}
$$

For future reference we also record the following involutive anti-automorphism of the q-Schrödinger algebra valid for real q :

$$
\begin{array}{lll}
\omega\left(P_{t}\right)=K & \omega\left(P_{x}\right)=G & \omega(D)=D \\
\omega(m)=m & \omega(q)=q . & \tag{2.5}
\end{array}
$$

3. Lowest-weight modules of $\hat{\mathcal{S}}_{\boldsymbol{q}}(\mathbf{1})$

Denote as $\mathcal{S}^{+}=\mathcal{S}(1)^{+}$the subalgebra generated by the positively-graded generators G and K, and as $\mathcal{S}^{-}=\mathcal{S}(1)^{-}$the subalgebra generated by the negatively-graded generators P_{x} and P_{t}.

Now we consider lowest-weight modules (LWM) of $\hat{\mathcal{S}}(1)$, in particular, Verma modules, which are standard for semisimple Lie algebras (SSLA) and their q-deformations. A lowestweight module is characterized by its lowest-weight vector v_{0} and its lowest weight. The lowest-weight vector is defined by the property of being annihilated by \mathcal{S}^{-}and of being an eigenvector of the Cartan generators. The lowest weight is given by the eigenvalues of the Cartan generators on v_{0}. In our case the Cartan generator is D so that we must have

$$
\begin{equation*}
D v_{0}=-d v_{0} \quad P_{x} v_{0}=0 \quad P_{t} v_{0}=0 \tag{3.1}
\end{equation*}
$$

where $d \in \mathbb{R}$ will be called the (conformal) weight. (The minus sign is for later convenience.)

We denote by \mathcal{B} the non-positively graded subalgebra generated by D, P_{x} and P_{t}. (This is an analogue of a Borel subalgebra.) A Verma module V^{d} is defined as the LWM with lowest weight $-d$, induced from a one-dimensional representation of \mathcal{B} spanned by v_{0}, on which the generators of \mathcal{B} act as in (3.1). It is given explicitly by $V^{d}=U_{q}\left(\mathcal{S}^{+}\right) \otimes v_{0}$, where $U_{q}\left(\mathcal{S}^{+}\right)$is the q-deformed universal enveloping algebra of \mathcal{S}^{+}. Clearly, $U_{q}\left(\mathcal{S}^{+}\right)$has the basis elements $p_{k, \ell}=G^{k} K^{\ell}$. The basis vectors of the Verma module are $v_{k, \ell}=p_{k, \ell} \otimes v_{0}$, (with $v_{0,0}=v_{0}$). The action of the q-Schrödinger algebraon this basis is derived easily from (2.3):

$$
\begin{align*}
& D v_{k, \ell}=(k+2 \ell-d) v_{k, \ell} \tag{3.2a}\\
& G v_{k, \ell}=v_{k+1, \ell} \tag{3.2b}\\
& K v_{k, \ell}=v_{k, \ell+1} \tag{3.2c}\\
& P_{x} v_{k \ell}=q^{(1-k) / 2} m[k]_{q}^{\prime} v_{k-1, \ell}+q^{d+1-\ell-k}[\ell]_{q} v_{k+1, \ell-1} \tag{3.2d}\\
& P_{t} v_{k \ell}=[\ell]_{q}[k+\ell-1-d]_{q} v_{k, \ell-1}+m \frac{[k]_{q}^{\prime}[k-1]_{q}^{\prime}}{[2]_{q}^{\prime}} v_{k-2, \ell} . \tag{3.2e}
\end{align*}
$$

For the derivation of (3.2) the following relations (which follow from (2.3)) are useful:

$$
\begin{align*}
& P_{x} G^{k}-q^{-k} G^{k} P_{x}=m q^{(1-k) / 2}[k]_{q}^{\prime} G^{k-1} \tag{3.3a}\\
& P_{x} K^{\ell}-K^{\ell} P_{x}=q^{1-\ell}[\ell]_{q} G K^{\ell-1} q^{-D} \tag{3.3b}\\
& P_{t} G^{k}-q^{k} G^{k} P_{t}=[k]_{q} G^{k-1} P_{x}+\frac{[k]_{q}^{\prime}[k-1]_{q}^{\prime}}{[2]_{q}^{\prime}} G^{k-2} \tag{3.3c}\\
& P_{t} K^{\ell}-K^{\ell} P_{t}=[\ell]_{q} K^{\ell-1}[D+\ell-1]_{q} . \tag{3.3d}
\end{align*}
$$

Because of (3.2a) we notice that the Verma module V^{d} can be decomposed in homogeneous subspaces with respect to grading operator D, (cf (2.4)), as follows:

$$
\begin{align*}
& V^{d}=\oplus_{n=0}^{\infty} V_{n}^{d} \tag{3.4a}\\
& V_{n}^{d}=\operatorname{lin} . \operatorname{span} .\left\{v_{k, \ell} \mid k+2 \ell=n\right\} \tag{3.4b}\\
& \operatorname{dim} V_{n}^{d}=1+\left[\frac{n}{2}\right]_{\mathrm{int}} \tag{3.4c}
\end{align*}
$$

where $[s]_{\text {int }}$ (not to be confused with $[s]_{q}$) is the largest integer less than or equal to s.
Next we analyse the reducibility of V^{d} through analogues of singular vectors. As in the SSLA situation a singular vector v_{s} in our case is a homogeneous element of V^{d}, such that $v_{s} \notin \mathbb{C} v_{0}$, and

$$
\begin{equation*}
P_{x} v_{s}=0 \quad P_{t} v_{s}=0 \tag{3.5}
\end{equation*}
$$

Now we give the possible singular vectors explicitly. Fix the grade $p>0$ and denote the singular vector as v_{s}^{p}. Consider the case of even grade, $p \in 2 \mathbb{N}$. Since $v_{s}^{p} \in V_{p}^{d}$ we have

$$
\begin{equation*}
v_{s}^{p}=\sum_{\ell=0}^{p / 2} a_{\ell} v_{p-2 \ell, \ell}=\mathcal{Q}^{p}(G, K) \otimes v_{0} \quad p \text { even. } \tag{3.6}
\end{equation*}
$$

Applying (3.5) we obtain that a singular vector exists only for $d=(p-3) / 2$ (as for $q=1$
[10]) and is given for arbitrary q by the formula

$$
\begin{align*}
& v_{s}^{p}=a_{0} \sum_{\ell=0}^{p / 2}\left(-m[2]_{q}^{\prime}\right)^{\ell}\binom{p / 2}{\ell}_{q} v_{p-2 \ell, \ell}=a_{0}\left(G^{2}-m[2]_{q}^{\prime} K\right)_{q}^{p / 2} \otimes v_{0} \tag{3.7}\\
& \mathcal{Q}^{p}(G, K)=a_{0}\left(G^{2}-m[2]_{q}^{\prime} K\right)_{q}^{p / 2}
\end{align*}
$$

where

$$
\begin{equation*}
\binom{p}{s}_{q} \doteq \frac{[p]_{q}!}{[s]_{q}![p-s]_{q}!} \quad[n]_{q}!\doteq[n]_{q}[n-1]_{q} \ldots[1]_{q} \tag{3.8}
\end{equation*}
$$

For odd grade there are no singular vectors as for $q=1$ [10].
To analyse the consequences of the reducibility of our Verma modules we take the subspace of $V^{(p-3) / 2}$:

$$
\begin{equation*}
I^{(p-3) / 2}=U\left(\mathcal{S}^{+}\right) v_{s}^{p} \tag{3.9}
\end{equation*}
$$

It is invariant under the action of the Schrödinger algebra, and is isomorphic to a Verma module $V^{d^{\prime}}$ with shifted weight $d^{\prime}=d-p=-(p+3) / 2$. The latter Verma module has no singular vectors, since its weight is restricted from above, $d^{\prime} \leqslant-\frac{5}{2}$, while it is clear that the necessary weight is greater than or equal to $-\frac{1}{2}$.

Let us denote by $\mathcal{L}^{(p-3) / 2}$ the factor module $V^{(p-3) / 2} / I^{(p-3) / 2}$ and by $|p\rangle$ the lowestweight vector of $\mathcal{L}^{(p-3) / 2}$. As a consequence of (3.5) and (3.7), $|p\rangle$ satisfies

$$
\begin{align*}
& P_{x}|p\rangle=0 \tag{3.10a}\\
& P_{t}|p\rangle=0 \tag{3.10b}\\
& \sum_{\ell=0}^{p / 2}\left(-m[2]_{q}^{\prime}\right)^{\ell}\binom{p / 2}{\ell}_{q} G^{p-2 \ell} K^{\ell}|p\rangle=0 \tag{3.10c}
\end{align*}
$$

Now from (3.10c) we see that

$$
\begin{equation*}
K^{p / 2}|p\rangle=-\sum_{\ell=0}^{p / 2-1} \frac{1}{\left(-m[2]_{q}^{\prime}\right)^{p / 2-\ell}}\binom{p / 2}{\ell}_{q} G^{p-2 \ell} K^{\ell}|p\rangle \tag{3.11}
\end{equation*}
$$

By a repeated application of this relation to the basis one can get rid of all powers greater than or equal to $p / 2$ of K. Thus the basis of $\mathcal{L}^{(p-3) / 2}$ will be a singleton basis for $p=2$, and a quasi-singleton basis for $p \geqslant 4$:

$$
\begin{equation*}
\operatorname{dim} V_{n}^{(p-3) / 2}=1 \quad \text { for } n=0,1 \text { or } n \geqslant p \tag{3.12}
\end{equation*}
$$

and it is given by
$v_{k \ell}^{p} \equiv G^{k} K^{\ell}|p\rangle \quad p \in 2 \mathbb{N} \quad k, \ell \in \mathbb{Z}_{+} \quad \ell \leqslant p / 2-1 \quad d=(p-3) / 2$.

The transformation rules of this basis are (3.2) except (3.2c) for $\ell=p / 2-1$, when we have

$$
K v_{k, p / 2-1}^{p}=-\sum_{s=0}^{p / 2-1} \frac{1}{\left(-m[2]_{q}^{\prime}\right)^{p / 2-s}}\binom{p / 2}{s}_{q} v_{k+p-2 s, s}^{p} .
$$

From the transformation rules we see that $\mathcal{L}^{(p-3) / 2}$ is irreducible. In the simplest case $p=2$ the irrep $\mathcal{L}^{-1 / 2}$ is also an irrep of the q-deformed centrally-extended Galilean subalgebra $G_{q}(1)$ generated by P_{x}, P_{t} and G.

Hence, the complete list of the irreducible lowest-weight modules over the q-deformed centrally-extended Schrödinger algebra is given by

- V^{d}, when $d \neq(p-3) / 2, p \in 2 \mathbb{N}$;
- $\mathcal{L}^{(p-3) / 2}$, when $d=(p-3) / 2, p \in 2 \mathbb{N}$.

These irreps are infinite-dimensional.

4. Vector-field realization of $\hat{\mathcal{S}}_{q}(1)$ and generalized q-deformed heat equations

Let us introduce the 'number' operator N_{y} for the coordinate $y=x, t$, i.e.

$$
\begin{equation*}
N_{y} y^{k}=k y^{k} \tag{4.1}
\end{equation*}
$$

and the q-difference operators \mathcal{D}_{y} and \mathcal{D}_{y}^{\prime}, which admit a general definition on a larger domain than polynomials, but on polynomials which are well defined as follows,

$$
\begin{align*}
& \mathcal{D}_{y} \doteq \frac{1}{y}\left[N_{y}\right]_{q} \tag{4.2a}\\
& \mathcal{D}_{y}^{\prime} \doteq \frac{1}{y\left[\frac{1}{2}\right]_{q}}\left[\frac{N_{y}}{2}\right]_{q}=\frac{1}{y}\left[N_{y}\right]_{q}^{\prime} \tag{4.2b}
\end{align*}
$$

so that for any suitable function f we obtain as a consequence of (4.1)

$$
\begin{align*}
\mathcal{D}_{y} f(y) & =\frac{f(q y)-f\left(q^{-1} y\right)}{y\left(q-q^{-1}\right)} \tag{4.3a}\\
\mathcal{D}_{y}^{\prime} f(y) & =\frac{f\left(q^{\frac{1}{2}} y\right)-f\left(q^{-\frac{1}{2}} y\right)}{y\left(q^{\frac{1}{2}}-q^{-\frac{1}{2}}\right)} \tag{4.3b}
\end{align*}
$$

For $q \rightarrow 1$ one has $N_{y} \rightarrow y \partial_{y}$ and $\mathcal{D}_{y}, \mathcal{D}_{y}^{\prime} \rightarrow \partial_{y}$.
With this notation we find a five-parameter realization of (2.3) via q-difference operators (or vector-field realization for short):
$P_{t}=q^{c_{1}} \mathcal{D}_{t} q^{\left(1-c_{5}\right) N_{t}+\left(1-c_{4}\right) N_{x}}$
$P_{x}=q^{c_{2}} \mathcal{D}_{x}^{\prime} q^{-c_{4} N_{t}+\left(c_{3}+\frac{1}{2}\right) N_{x}}$
$D=2 N_{t}+N_{x}-d$
$G=q^{c_{2}-c_{1}-c_{4}+c_{5}} t \mathcal{D}_{x}^{\prime} q^{\left(c_{5}-c_{4}\right) N_{t}+\left(c_{3}+c_{4}-\frac{1}{2}\right) N_{x}}+q^{-c_{2}-c_{3}-\frac{1}{2}} m x q^{c_{4} N_{t}-\left(c_{3}+1\right) N_{x}}$
$K=q^{-c_{1}+c_{5}-1+d} t^{2} \mathcal{D}_{t} q^{\left(c_{5}-1\right) N_{t}+c_{4} N_{x}}+q^{-c_{1}+c_{5}-1+d} t x \mathcal{D}_{x} q^{\left(c_{5}-2\right) N_{t}+\left(c_{4}-1\right) N_{x}}$

$$
\begin{equation*}
-q^{-c_{1}+c_{5}-1}[d]_{q} t q^{c_{5} N_{t}+c_{4} N_{x}}+q^{-2 c_{2}-3 c_{3}-\frac{3}{2}+d}\left[\frac{1}{2}\right]_{q} m x^{2} q^{2\left(c_{4}-1\right) N_{t}-2\left(c_{3}+1\right) N_{x}} \tag{4.4e}
\end{equation*}
$$

where $c_{1}, c_{2}, c_{3}, c_{4}$ and c_{5} are arbitrary parameters. (There might be other vector-field realizations that are not equivalent to the one just given.)

For $q=1$ we recover the standard vector-field realization of $\hat{\mathcal{S}}(1)$, namely,

$$
\begin{align*}
& P_{t}=\partial_{t} \tag{4.5a}\\
& P_{x}=\partial_{x} \tag{4.5b}\\
& D=2 t \partial_{t}+x \partial_{x}-d \tag{4.5c}\\
& G=t \partial_{x}+m x \tag{4.5d}\\
& K=t^{2} \partial_{t}+t x \partial_{x}-t d+(m / 2) x^{2} . \tag{4.5e}
\end{align*}
$$

Our realization (4.4) may be used to construct a polynomial realization of the irreducible lowest-weight modules considered in section 3. For this case we represent the lowest-weight vector by the function 1 . Indeed, the constants in (4.4) are chosen so that (3.1) is satisfied:

$$
\begin{equation*}
D 1=-d \quad P_{x} 1=0 \quad P_{t} 1=0 \tag{4.6}
\end{equation*}
$$

Applying the basis elements $p_{k, \ell}=G^{k} K^{\ell}$ of the universal enveloping algebra $U_{q}\left(\mathcal{S}^{+}\right)$to 1 we get polynomials in x, t which will be denoted by $f_{k, \ell} \equiv p_{k, \ell}$. We have in special cases

$$
\begin{align*}
& f_{0, \ell}=q^{\ell^{2}\left(c_{5}-1\right) / 2+\ell\left(-c_{1}+\left(c_{5}-1\right) / 2\right)}(-d)_{\ell}^{q} t^{\ell} \\
& \quad \times \sum_{s=0}^{\ell} \frac{q^{-s^{2}\left(2 c_{3}+2 c_{4}-\left(c_{5} / 2\right)+\frac{1}{2}\right)}}{(-d)_{s}^{q}}\binom{\ell}{s}_{q}\left(\frac{q^{\ell\left(2 c_{4}-c_{5}-1\right)+c_{1}-2 c_{2}-c_{3}-\left(c_{5} / 2\right)+1+d} m x^{2}}{[2]_{q}^{\prime} t}\right)^{s} \\
& f_{2 k, 0}=q^{k^{2}\left(c_{5}-1\right) / 2+k\left(-c_{1}+\left(c_{5}-1\right) / 2\right)}\left(\frac{1}{2}\right)_{k}^{q}\left([2]_{q}^{\prime} m t\right)^{k} \\
& \\
& \quad \times \sum_{s=0}^{k} \frac{q^{-s^{2}\left(2 c_{3}+2 c_{4}-\left(c_{5} / 2\right)+\frac{1}{2}\right.}}{\left(\frac{1}{2}\right)_{s}^{q}}\binom{k}{s}_{q}\left(\frac{q^{k\left(2 c_{4}-c_{5}-1\right)+c_{1}-2 c_{2}-c_{3}-\left(c_{5} / 2\right)+\frac{1}{2}} m x^{2}}{[2]_{q}^{\prime} t}\right)^{s} \tag{4.7b}\\
& f_{2 k+1,0}=m x q^{k^{2}\left(c_{5}-1\right) / 2+k\left(-c_{1}+c_{4}+\left(c_{5}-3\right) / 2\right)-c_{2}-c_{3}-\frac{1}{2}}\left(\frac{3}{2}\right)_{k}^{q}\left([2]_{q}^{\prime} m t\right)^{k} \tag{4.7c}\\
& \\
& \quad \times \sum_{s=0}^{k} \frac{q^{-s^{2}\left(2 c_{3}+2 c_{4}-\left(c_{5} / 2\right)+\frac{1}{2}\right)}}{\left(\frac{3}{2}\right)_{s}^{q}}\binom{k}{s}_{q}\left(\frac{q^{k\left(2 c_{4}-c_{5}-1\right)+c_{1}-2 c_{2}-3 c_{3}-c_{4}-\left(c_{5} / 2\right)-\frac{1}{2}} m x^{2}}{[2]_{q}^{\prime} t}\right)^{s}
\end{align*}
$$

where $(a)_{p}^{q}$ is the q-Pochhammer symbol

$$
\begin{equation*}
(a)_{p}^{q}=[a+p-1]_{q}[a+p-2]_{q} \ldots[a]_{q} . \tag{4.8}
\end{equation*}
$$

If we choose the constants such that $2 c_{3}+2 c_{4}-c_{5} / 2=0$ then the above sums are standard degenerate q-hypergeometric polynomials:

$$
\begin{equation*}
{ }_{1} F_{1}^{q}(-a, b ; y) \equiv \sum_{s=0}^{a}\binom{a}{s}_{q} q^{-\left(s^{2} / 2\right) /(b)_{s}^{q}}(-y)^{s} \tag{4.9}
\end{equation*}
$$

One can show that the basis $f_{k, \ell}$ is a realization of the irreducible lowest-weight representations of $\hat{\mathcal{S}}(1)$ listed at the end of the previous section. Indeed, there is one-to-one correspondence between the states $v_{k, \ell}$ of the Verma modules over $\hat{\mathcal{S}}_{q}(1)$ and the polynomials $f_{k, \ell}$. The irreducible lowest-weight representations of $\hat{\mathcal{S}}_{q}(1)$ are factor modules of Verma modules, with factorization over the invariant subspaces generated by singular vectors. This statement is trivial if there is no singular vector. When a singular vector exists, i.e. for the representations $V^{(p-3) / 2}$, we obtain a q-difference operator by substituting in $\mathcal{Q}^{p}(G, K)$ (cf (3.6) and (3.7)) each generator with its vector-field realization. For the irreducibility of $\mathcal{L}^{(p-3) / 2}$ it is enough to show that the q-difference operator $\mathcal{Q}^{p}(G, K)$ vanishes identically when applied to 1 . This contains more information as $\mathcal{Q}^{p}(G, K)$ also gives a q-difference equation invariant under the action of $\hat{\mathcal{S}}_{q}(1)$. Because of this invariance the solutions of this equation are elements of $\mathcal{L}^{(p-3) / 2}$. Thus we have an infinite family of q-difference equations, the family members being labelled by $p \in 2 \mathbb{N}$, i.e. we have one equation for each representation space $V^{(p-3) / 2}$. These equations may be called generalized q-deformed heat equations (m real) or generalized q-deformed Schrödinger equations (m imaginary). The case $p=2$ is a q-difference analogue of the ordinary heat/Schrödinger equation.

Before making the last example explicit we make a choice of constants in (4.4) and set for simplicity $c_{1}=c_{2}=c_{3}=c_{4}=c_{5}=0$:
$P_{t}=\mathcal{D}_{t} q^{N_{t}+N_{x}}$
$P_{x}=\mathcal{D}_{x}^{\prime} q^{\frac{1}{2} N_{x}}$
$D=2 N_{t}+N_{x}-d$

$$
\begin{align*}
& G=t \mathcal{D}_{x}^{\prime} q^{-\frac{1}{2} N_{x}}+q^{-\frac{1}{2}} m x q^{-N_{x}} \tag{4.10d}\\
& K=q^{d-1} t^{2} \mathcal{D}_{t} q^{-N_{t}}+q^{d-1} t x \mathcal{D}_{x} q^{-2 N_{t}-N_{x}}-q^{-1}[d]_{q} t+q^{d-\frac{3}{2}}\left[\frac{1}{2}\right]_{q} m x^{2} q^{-2 N_{t}-2 N_{x}} \tag{4.10e}
\end{align*}
$$

The polynomials from (4.7) simplify to
$f_{0, \ell}=q^{-\ell(\ell+1) / 2}(-d)_{\ell}^{q} t^{\ell}{ }_{1} F_{1}^{q}\left(-\ell,-d ;-\frac{q^{1+d-\ell} m x^{2}}{[2]_{q}^{\prime} t}\right)$
$f_{2 k, 0}=q^{-k(k+1) / 2}\left(\frac{1}{2}\right)_{k}^{q}\left([2]_{q}^{\prime} m t\right)^{k}{ }_{1} F_{1}^{q}\left(-k, \frac{1}{2} ;-\frac{q^{\frac{1}{2}-k} m x^{2}}{[2]_{q}^{\prime} t}\right)$
$f_{2 k+1,0}=q^{-k(k+3) / 2-\frac{1}{2}}\left(\frac{3}{2}\right)_{k}^{q}\left([2]_{q}^{\prime} m t\right)^{k} m x_{1} F_{1}^{q}\left(-k, \frac{3}{2} ;-\frac{q^{-\frac{1}{2}-k} m x^{2}}{[2]_{q}^{\prime} t}\right)$.
The operator $S_{q}=\mathcal{Q}=G^{2}-[2]_{q}^{\prime} m K$ determining the singular vectors reads

$$
\begin{gather*}
S_{q}=t^{2} q^{\frac{1}{2}}\left(\mathcal{D}_{x}^{\prime 2} q^{-N_{x}}-q^{d-\frac{3}{2}}[2]_{q}^{\prime} m \mathcal{D}_{t} q^{-N_{t}}\right)+m t x \mathcal{D}_{x}^{\prime}\left([2]_{q}^{\prime}-\left(1+q^{N_{x}}\right) q^{d-1-2 N_{t}}\right) q^{-\frac{3}{2} N_{x}} \\
+q^{-1} m t\left(q^{-2 N_{x}}+[2 d]_{q}^{\prime}\right)+q^{-2} m^{2} x^{2}\left(1-q^{d+\frac{1}{2}-2 N_{t}}\right) q^{-2 N_{x}} \tag{4.12}
\end{gather*}
$$

which for $q=1$ gives

$$
\begin{equation*}
S=t^{2}\left(\partial_{x}^{2}-2 m \partial_{t}\right)+m t(2 d+1) \tag{4.13}
\end{equation*}
$$

Hence we interprete for $d=-\frac{1}{2}$ (which corresponds to the lowest singular vector $(p=2)$) the equation $S_{q} f=0$ as a q-deformed heat/Schrödinger equation as we motivated in the introduction. The explicit form of this equation is
$S_{q} f=0$
$S_{q}=t^{2} q^{\frac{1}{2}}\left(\mathcal{D}_{x}^{\prime 2} q^{-N_{x}}-q^{-2}[2]_{q}^{\prime} m \mathcal{D}_{t} q^{-N_{t}}\right)+m t x \mathcal{D}_{x}^{\prime}\left([2]_{q}^{\prime}-\left(1+q^{N_{x}}\right) q^{-\frac{3}{2}-2 N_{t}}\right) q^{-\frac{3}{2} N_{x}}$

$$
\begin{equation*}
-\lambda q^{-1} m t x \mathcal{D}_{x} q^{-N_{x}}+\lambda q^{-2} m^{2} x^{2} t \mathcal{D}_{t} q^{-N_{t}-2 N_{x}} \tag{4.14}
\end{equation*}
$$

where $\lambda \doteq q-q^{-1}$. For $q \mapsto 1(\lambda \mapsto 0)$ our equation leads to the ordinary heat/Schrödinger equation.

5. A q-deformed Schrödinger algebra on-shell

We now discuss the q-deformation of the vector-field realization of $\hat{\mathcal{S}}(1)$ given by Floreanini and Vinet [11]. The generators are [11]
$P_{t}=\mathcal{D}_{t} q^{-1-N_{t}}$
$P_{x}=\mathcal{D}_{x}^{\prime} q^{-\frac{1}{2} N_{x}-\frac{1}{2}}$
$D=2 N_{t}+N_{x}+\frac{1}{2}$
$G=t \mathcal{D}_{x}^{\prime} q^{-\frac{1}{2} N_{x}-\frac{3}{2}}+x\left[\frac{1}{2}\right]_{q} q^{-N_{x}-\frac{3}{2}}$
$K=t^{2} \mathcal{D}_{t} q^{-N_{t}-2 N_{x}-4}+t x \mathcal{D}_{x}^{\prime} q^{-\frac{3}{2} N_{x}-\frac{5}{2}}+x^{2}\left[\frac{1}{2}\right]_{q}^{2} q^{-2 N_{x}-4}+t\left[\frac{1}{2}\right]_{q} q^{-2 N_{x}-\frac{7}{2}}$.
Note that the explicit form of the above expressions differs from the one in [11], formulae (9). We change $t \rightarrow\left(1-q^{-2}\right) t$ and $x \rightarrow(1-q) x$ (employed in [11] only for the limit $q \rightarrow 1$); our definition for the q-difference operators (4.2) is also slightly different; we use N_{y} instead of $T_{y}=q^{N_{y}}$ used in [11]; finally, our generator D is essentially the \log of their D.

The advantage of the above form of the q-deformed generators is that the $q \rightarrow 1$ limit is more transparent. In that limit we recover (4.5) with $m=\frac{1}{2}, d=-\frac{1}{2}$. The value of d
is not accidental since this realization was achieved in [11] as the symmetry algebra of the solutions of a q-deformation of the heat equation. Indeed, these generators do not form a closed algebra. We have instead of (2.1)

$$
\begin{align*}
& {\left[P_{t}, G\right]=P_{x} q^{-D-\frac{1}{2}}} \tag{5.2a}\\
& q^{2} P_{x} K-K P_{x}=G \tag{5.2b}\\
& {[D, G]=G} \tag{5.2c}\\
& {\left[D, P_{x}\right]=-P_{x}} \tag{5.2d}\\
& {\left[D, P_{t}\right]=-2 P_{t}} \tag{5.2e}\\
& {[D, K]=2 K} \tag{5.2f}\\
& {\left[P_{t}, K\right]=\frac{1}{\left[\frac{1}{2}\right]_{q}}\left[\frac{D}{2}\right]_{q} q^{-\frac{3}{2} D-2}-\lambda\left[\frac{1}{4}\right]_{q}\left[\frac{3}{4}\right]_{q} q^{-2 D-2}} \tag{5.2g}\\
& q P_{x} G-G P_{x}=\left[\frac{1}{2}\right]_{q} q^{-1 / 2} . \tag{5.2h}
\end{align*}
$$

However, instead of $[G, K]=0$ one has
$[G, K]=L=-\lambda \frac{t^{2}}{x\left[\frac{1}{2}\right]_{q}}\left[\frac{N_{x}}{2}\right]_{q}^{2} q^{-2 N_{x}-\frac{7}{2}}-\lambda t x\left[\frac{1}{2}\right]_{q}\left[N_{t}\right]_{q} q^{-N_{t}-3 N_{x}-\frac{13}{2}}$
where L is a new generator. For our purposes it is enough that the operator L annihilates all functions $f_{k, \ell}=G^{k} K^{\ell} 1$. This is the on-shell poperty mentioned in the introduction. In the basis $f_{k, \ell}$ we have

$$
\begin{align*}
& f_{0, \ell}=f_{2 \ell, 0} \tag{5.4a}\\
& f_{2 k, 0}=\left(\frac{1}{2}\right)_{k}^{q} t^{k} q_{1}^{-\frac{1}{2} k^{2}-3 k} F_{1}^{q}\left(-k ; \frac{1}{2} ;-\frac{q^{1-k} x^{2}\left[\frac{1}{2}\right]_{q}^{2}}{t}\right) \tag{5.4b}\\
& f_{2 k+1,0}=\left(\frac{3}{2}\right)_{k}^{q}\left[\frac{1}{2}\right]_{q} x t^{k} q_{1}^{-\frac{1}{2}\left(k^{2}+3\right)-4 k} F_{1}^{q}\left(-k ; \frac{3}{2} ;-\frac{q^{-k} x^{2}\left[\frac{1}{2}\right]_{q}^{2}}{t}\right) \tag{5.4c}
\end{align*}
$$

(cf (4.9)). For $q=1$ these expressions were obtained in [10].
Formula (5.4a) is equivalent to $\left(G^{2}-K\right) 1=0$, i.e. we have the q-deformed version of the irrep $\mathcal{L}^{-1 / 2},(p=2)$, and the basis consists only of $f_{k} \equiv f_{k, 0}=G^{k} 1$. The generators act on this basis as follows:

$$
\begin{align*}
& D f_{k}=\left(k+\frac{1}{2}\right) f_{k} \tag{5.5a}\\
& G f_{k}=f_{k+1} \tag{5.5b}\\
& K f_{k}=f_{k+2} \tag{5.5c}\\
& P_{x} f_{k}=k\left[\frac{1}{2}\right]_{q} q^{-\frac{3}{2}} f_{k-1} \tag{5.5d}\\
& P_{t} f_{k}=\left[\frac{1}{2}\right]_{q} q^{-\frac{5}{2}} b_{k} f_{k-2} \quad b_{k} \doteq \sum_{s=0}^{k-1} s q^{-s} \tag{5.5e}
\end{align*}
$$

where, by summation convention, $b_{0}=b_{1}=0$.

Acknowledgments

VKD was supported in part by BNFR under contract $\mathrm{Ph}-401$. CM is supported by Deutsche Forschungsgemeinschaft under contract Do 155/17-1.

References

[1] Drinfeld V G 1985 Dokl. Akad. Nauk SSSR 283 1060-4 (in Russian) (Engl. transl.: 1985 Soviet. Math. Dokl. 32 254-8); 1986 Proc. ICM (Berkeley, CA: MSRI) pp 798-820
[2] Jimbo M 1985 Lett. Math. Phys. 10 63-9; 1986 Lett. Math. Phys. 11 247-52
[3] Faddeev L D, Reshetikhin N Yu and Takhtajan L A 1989 Alg. Anal. 1 178-206 (in Russian); 1988 Algebraic Analysis vol 1 (New York: Academic) pp 129-39
[4] Barut A O and Ra̧czka R 1980 Theory of Group Representations and Applications 2nd edn (Warsaw: Polish Science)
[5] Celeghini E, Giachetti R, Sorace E and Tarlini M 1991 J. Math. Phys. 32 1159-65
[6] Bonechi F, Celeghini E, Giachetti R, Sorace E and Tarlini M 1992 Florence Preprint DFF-156-03-92, hep-th/9203048
[7] Ballesteros A, Gromov N A, Herranz F J, del Olmo M A and Santander M 1995 J. Math. Phys. 36 5916-37
[8] Hagen C R 1972 Phys. Rev. D 5 377-88
[9] Barut A O and Xu B-W 1981 Phys. Lett. 82A 218-20
[10] Dobrev V K, Doebner H-D and Mrugalla C 1995 TU Clausthal Preprint ASI-TPA/16/95
[11] Floreanini R and Vinet L 1994 Lett. Math. Phys. 32 37-44

[^0]: § Permanent address: Bulgarian Academy of Sciences, Institute of Nuclear Research and Nuclear Energy, 72 Tsarigradsko Chaussee, 1784 Sofia, Bulgaria.

